Daniel N. Leatherwood : row \#7
MATH 3303-01 : Linear Algebra
Due: Friday, April 15, 2005
(\#29), (388-389), 1, 4, 9, 11, 14, 16
This document was created by ETEX

In exercises 1 through 4, find a least squares solution to $A \mathbf{x}=\mathbf{b}$.
$A=\left[\begin{array}{rr}2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}3 \\ 1 \\ 2 \\ -1\end{array}\right]$
$\operatorname{rref}(A)$ shows that rank $A=2$. The normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is
$\left[\begin{array}{ll}6 & 1 \\ 1 & 3\end{array}\right] \mathbf{x}=\left[\begin{array}{l}8 \\ 0\end{array}\right]$
Therefore,
$\hat{\mathbf{x}}=\left[\begin{array}{r}\frac{24}{17} \\ -\frac{8}{17}\end{array}\right]$
$A=\left[\begin{array}{rrrr}-1 & 0 & 0 & 4 \\ 4 & -2 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 2 & -2 & 0 \\ 2 & 0 & 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}-1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1\end{array}\right]$
$\operatorname{rref}(A)$ shows that rank $A=4$. The normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is
$\left[\begin{array}{rrrr}30 & -8 & 3 & -2 \\ -8 & 8 & -4 & 0 \\ 3 & -4 & 6 & -2 \\ -2 & 0 & -2 & 21\end{array}\right] \mathbf{x}=\left[\begin{array}{r}13 \\ -2 \\ 2 \\ -3\end{array}\right]$
Therefore, $\hat{\mathbf{x}}=\left[\begin{array}{r}\frac{25}{49} \\ \frac{85}{196} \\ \frac{17}{49} \\ -\frac{3}{49}\end{array}\right]$

In exercises 7 through 10, find a least squares line for the given data points.
$388-9 \quad(2,3),(3,4),(4,3),(5,4),(6,3),(7,4)$
When you put those data points into matrices A and \mathbf{b}, you get
$A=\left[\begin{array}{ll}2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \\ 6 & 1 \\ 7 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4\end{array}\right]$
Since $\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}, \hat{\mathbf{x}}=\left[\begin{array}{c}\frac{3}{35} \\ \frac{109}{35}\end{array}\right]$. Since (in this case) $\hat{\mathbf{x}}=$ $\left[\begin{array}{r}m \\ b\end{array}\right], y=\frac{3}{35} x+\frac{109}{35}$.

In Exercises 11 and 12, find a quadratic least squares polynomial for the given data.
388-11 $\mid(0,3.2),(0.5,1.6),(1,2),(2,-0.4),(2.5,-0.8),(3,-1.6),(4,0.3),(5,2.2)$
When you put those data points into matrices A and \mathbf{b}, you get

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0.25 & 0.5 & 1 \\
1 & 1 & 1 \\
4 & 2 & 1 \\
6.25 & 2.5 & 1 \\
9 & 3 & 1 \\
16 & 4 & 1 \\
25 & 5 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
3.2 \\
1.6 \\
2 \\
-0.4 \\
-0.8 \\
-1.6 \\
0.3 \\
2.2
\end{array}\right] . \\
& \hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}, \text { so } \hat{\mathbf{x}} \approx\left[\begin{array}{r}
.5718 \\
-3.1314 \\
3.4627
\end{array}\right]
\end{aligned}
$$

Thus, $y \approx .5718 x^{2}-3.1314 x+3.4627$.

A steel producer gathers the following data.

Year	1997	1998	1999	2000	2001	2002
Annual sales (millions of dollars)	1.2	2.3	3.2	3.6	3.8	5.1

Represent the years $1997, \ldots, 2002$ as $0,1,2,3,4,5$, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).
(a) Find the least squares line relating x and y.

When you put those data points into matrices A and \mathbf{b}, you get
$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1.2 \\ 2.3 \\ 3.2 \\ 3.6 \\ 3.8 \\ 5.1\end{array}\right]$
$\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$, so $\hat{\mathbf{x}} \approx\left[\begin{array}{r}.6971 \\ 1.4571\end{array}\right]$.
Thus, $y \approx .6971 x+1.4571$.
(b) Use the equation obtained in (a) to estimate the annual sales for the year 2006 .

$$
y \approx .6971(9)+1.4571 \rightarrow y \approx 7.7314
$$

389-16 The distributor of a new car has obtained the following data.

Number of Weeks After Introduction of Car	Gross Receipts per Week (millions of dollars)
1	0.8
2	0.5
3	3.2
4	4.3
5	4
6	5.1
7	4.3
8	3.8
9	1.2
10	0.8

Let x denote the gross receipts per week (in millions of dollars) t weeks after the introduction of the car.
(a) Find a least squares quadratic polynomial for the given data.

When you put those data points into matrices A and \mathbf{b}, you get
$A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \\ 16 & 4 & 1 \\ 25 & 5 & 1 \\ 36 & 6 & 1 \\ 49 & 7 & 1 \\ 64 & 8 & 1 \\ 81 & 9 & 1 \\ 100 & 10 & 1\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0.8 \\ 0.5 \\ 3.2 \\ 4.3 \\ 4 \\ 5.1 \\ 4.3 \\ 3.8 \\ 1.2 \\ 0.8\end{array}\right]$
$\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$, so $\hat{\mathbf{x}} \approx\left[\begin{array}{r}-0.2129 \\ 2.3962 \\ -2.1833\end{array}\right]$.
Thus, $y \approx-0.2129 x^{2}+2.3962 x-2.1833$.
(b) Use the equation in part (a) to estimate the gross receipts 12 weeks after the introduction of the car.
$y \approx-0.2129(12)^{2}+2.3962(12)-2.1833 \rightarrow y \approx-4.0833$.
This is, of course, impossible, but it goes to show you what extrapolation can do to you...

